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Abstract—Prematurity and intra-uterine growth restriction (IUGR) are risk factors for long-term poor neurode-
velopmental outcomes and are associated with reductions in regional brain volumes. In this study, the aim was to
determine the possible role of 3-D ultrasonography (3-DUS) volumes of whole brain, thalamus, frontal cortex
and cerebellum, measured at postnatal days 30�40, as early predictors of long-term risk for neurobehavioral dis-
orders. To this purpose, a heterogeneous population of full-term, preterm, IUGR and preterm IUGR (pre-IUGR)
born individuals (n = 334), characterized by gestational age and birth weight in the ranges 24�41 wk and
860�4000 g, respectively, was followed from postnatal days 30�40 to the second year of life. At enrollment, brain
volumes were measured using 3-DUS, whereas neurodevelopment was assessed at 2 y using the Griffiths III test.
Cerebral volumes were strictly and significantly lower in infants characterized by a negative outcome and had
excellent diagnostic accuracy. The 3-DUS volume of whole brain, thalamus, frontal cortex or cerebellum may be
an early predictor of neonates at major risk for neurobehavioral disorders in later life. (E-mail: maria.
aisa@unipg.it) © 2021 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

Key Words: Neurodevelopment impairment, Prematurity, Intra-uterine growth restriction, 3-D ultrasonography,
Cerebral volumes, Griffiths III test.
INTRODUCTION

Compared with full-term neonates, preterm, very low

birth weight (VLBW) and intra-uterine growth restric-

tion (IUGR) born individuals are at higher long-term

risk of neurodevelopmental disorders (Aisa et al. 2020),

which tends to increase with decreases in gestational age

(GA) and birth weight (BW) (Thompson et al. 2019) and

impair quality of life (Theunissen et al. 2001). These def-

icits often emerge later in life (Hack et al. 2005;

Serenius et al. 2016; Allotey et al. 2018), illustrating

how prematurity, VLBW and IUGR may have negative
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consequences on children who do not present clear clini-

cal manifestations that can be diagnosed early. Addition-

ally, in the first 3 y after birth, the brain undergoes

dramatic growth, and multitudes of synaptic connections

are laid down (Dobbing and Sands 1973). These sensi-

tive early years are critical for neuroplasticity (John-

ston 2009). In the light of the above observations, the

need for the early recognition of neonates at high long-

term risk of neurodevelopmental impairments appears

evident, along with the advance of early stimulation pro-

grams or neuroprotective intervention attempting to

improve the outcome of delayed neurodevelopment

(Nordhov et al. 2010; Spittle et al. 2015).

Early diagnosis of developmental impairment or

disabilities using traditional means is, however, unlikely

because neurologic function is still very immature at
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birth (Parikh 2016). The recent introduction of new

instrumental techniques for the morphological, func-

tional and metabolic study of the brain in the perinatal

period has provided important knowledge and perspec-

tive for both diagnosis and prognosis of neurological

damage (Parikh 2016), and in this context, the regional

volumetric evaluations, by magnetic resonance imaging

(MRI) or ultrasonography (US), seem to offer the best

opportunities to identify and develop powerful prognos-

tic indicators (Tao and Neil 2014; Parikh 2016). The

strong correlation of prematurity and IUGR with both

poor motor and cognitive development in later life

(Levine et al. 2015; Murray et al. 2015;

Wang et al. 2016; Taine et al. 2018; Sacchi et al. 2020)

and reduction of regional brain volumes (Garc�ıa-
Alix et al. 2004; Cheong et al. 2016; Keunen et al. 2016;

Monson et al. 2016; Bruno et al. 2017;

Matthews et al. 2018; Chau et al. 2019; Wu et al. 2019;

Aisa et al. 2020; Hammerl et al. 2020) has indicated the

strong relationships between cerebral volumes and neu-

rodisorders, as well as the prognostic significance of the

volumetric measurements in preterm and IUGR subjects

(Garc�ıa-Alix et al. 2004; Keunen et al. 2016;

Matthews et al. 2018; Wu et al. 2019; Aisa et al. 2020;

Hammerl et al. 2020). At present, however, data on 3-

DUS, which is now emerging as a sensitive, valuable,

non-time-consuming or non-cost-consuming method

capable of estimating brain structures and volumes in

neonates without restrictions (Rizzo et al. 2011; Kleber-

mass-Schrehof et al. 2013; Riccabona 2014;

Businelli et al. 2015; Green et al. 2016;

Ximenes et al. 2019), are very limited, particularly with

respect to the early postnatal period.

Using a well-established experimental approach

(Aisa et al. 2020), to investigate, further, the potential

significance of 3-DUS whole brain volume (WBV),

thalamus volume (TV), frontal cortex volume (FCV)

and cerebellum volume (CV) as early and sensitive pre-

dictors of adverse neurodevelopment in later life

(Aisa et al. 2020), and to look for a procedure capable

of identifying subjects at long-term risk of neurological

diseases, in general, we examined the aforementioned

variables in a wide and heterogeneous population. As

prematurity and IUGR are two diverse conditions that

may induce similar or distinctive effects in many cir-

cumstances (Aisa et al. 2016, Aisa et al. 2019), includ-

ing neurodevelopment (Aisa et al. 2020), to reveal

possible comparable or differential consequences

related to prematurity and IUGR, alone or in combina-

tion, we selected preterm, IUGR and pre-IUGR neo-

nates. In addition, because the risk of morbidity varies

according to the spectrum of GA and BW

(Thompson et al. 2019), the enrolled subjects
significantly differed in GA and BW. Infants were fol-

lowed from postnatal days 30 to 40 to the second year

of life. At these time points, 3-DUS volumetric and

neurodevelopmental assessments were carried out,

respectively. Neurodevelopment was assayed using the

Griffiths III test (Green et al. 2016). Data on 3-DUS

cerebral volumes were then related to neurodevelop-

ment outcome. The variability of volumes with respect

to different gestational ages and IUGR was also consid-

ered.
METHODS

Study design and neonate population

Characteristics of the present study are summarized

and graphically represented in Figure 1.

Briefly, our observational population was made up of

334 neonates of healthy mothers recruited at the Centre of

Perinatal and Reproductive Medicine, University of Peru-

gia, Perugia, Italy. Neonates with GA and BW in the ranges

24�41 wk and 860�4000 g, respectively, were enrolled at

postnatal days 30�40 or corrected age. The exclusion crite-

ria were genetic disease, rescue hypothermia, severe perina-

tal asphyxia, cerebral hemorrhage, intraventricular

hemorrhage greater than first grade, periventricular leuko-

malacia, sepsis, infectious diseases of the brain, maternal

drug use and/or alcohol abuse in pregnancy and maternal

congenital infections (i.e., toxoplasmosis, cytomegalovirus).

The population comprised 158 full-term, 113 pre-

term, 30 IUGR and 33 pre-IUGR infants (Fig. 2). In the

case of prematurity, the postnatal age was corrected to

equivalent age. Once the newborns had been included in

the study, WBV, TV, FCV and CV were estimated using

3-DUS and recorded. At 2 y of age (or corrected age in

the case of prematurity), the infants underwent a neuro-

behavioral assessment using the Griffiths III test

(Cirelli et al. 2015; Green et al. 2016) (Fig. 2). Two sub-

groups with different outcomes, namely, the normal neu-

rodevelopment subgroup (301 subjects: 158 full-term,

100 preterm, 25 IUGR and 18 pre-IUGR) and abnormal

neurodevelopment subgroup (33 subjects: 13 preterm, 5

IUGR and 15 pre-IUGR), were then recognized (Fig. 2).

Institutional review board approval was obtained

for data collection, and mothers were informed and gave

specific consent to the study.
Diagnosis of IUGR and assessment of GA, postnatal

corrected age and 3-DUS cerebral volumes

Diagnosis of IUGR was based on biometric US evalu-

ations during the second and third trimesters when decreases

in the assessed fetal weight below the 10th percentile from

the reference curves were detected using Hadlock’s formula

and reference values (Hadlock et al.1985).



Fig. 1. Characteristics of the study. 3-DUS = 3-D ultrasonography; WBV =whole brain volume; TV = thalamus volume;
FCV = frontal cortex volume; CV = cerebellum volume; IUGR = intra-uterine growth restriction.
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GA was correctly dated during the first trimester of

pregnancy by US estimates.

Postnatal corrected age was calculated by subtract-

ing from the chronological age the number of weeks

before 40 wk at which the neonate was born.
Cerebral volumes were estimated using Virtual

Organ Computer-Aided Analysis software (VOCAL;

Vocal II, General Electric Ultrasound Systems, USA;

probe RIC5, frequency 5 Hz) through transfontanellar

3-DUS. This technology is in accordance with the



Fig. 2. Three-dimensional ultrasonography cerebral volumes in the normal and abnormal neurodevelopment subgroups
(a) and in neonates of different gestational age and intrauterine growth restriction (IUGR) status (b). WBV =whole brain

volume, TV = thalamus volume; FCV = frontal cortex volume; CV = cerebellum volume.
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International US Scans guidelines and seems to be

highly reproducible and accurate for the assessment

of organ volumes in fetal life and throughout child-

hood (Rizzo et al. 2011; Riccabona 2014;

Businelli et al. 2015; Aisa et al. 2016,

Aisa et al. 2019, Babucci et al. 2019;

Ximenes et al. 2019; Dudink et al 2020). It consists
of coronal, axial and sagittal scans with additional A,

B and C image plans automatically produced by

VOCAL II Software.

Measurements were obtained as an average of four

repeated estimations by a blinded sonographer. Both

intra- and inter-operator variability were <2% for WBV,

TV and CV and <5% for FCV.
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Neurodevelopmental assessment at 2 y

Neurodevelopment was assessed using the Griffiths

III test (Cirelli et al. 2015; Green et al. 2016).

The total developmental quotient (DQ) was calculated

according to the instructions in the manual. The children

were evaluated by psychologists and pediatricians experi-

enced in neurodevelopmental examination, who had com-

pleted an accredited training course on the Griffiths scales.

All of them were blinded to the data on cerebral volumes.

At the cutoff value of 85, which was obtained using DQ

mean � 1SD, a DQ �85 was considered normal. Infants

with DQs �85 or <85 were then included in the normal or

abnormal neurodevelopment groups, respectively

(Cirelli et al. 2015; Green et al. 2016).

Statistical analysis

Data were analyzed and graphs made using Graph-

Pad Prism (Version 6.01, GraphPad, San Diego, CA,

USA) and SPSS Version 23 (IBM, Armonk, NY, USA)

statistical software.

The probability of occurrence of a neurobehavioral dis-

order associated with different gestational ages and IUGR

was defined by the risk ratio. This was calculated as the ratio

of the probability of disease occurrence in the category of

infants born preterm, IUGR or pre-IUGR to that of the

infants born at full term (used as reference control). As the

occurrence of neurobehavioral disorders in the latter cate-

gory was zero, its value was conventionally set to 0.5 to

obtain a value mathematically. The normal distribution of

variables under investigation was assessed using the

D’Agostino�Pearson normality test. As these were not

found to be distributed normally, comparison between two

groups was performed using the non-parametric
Table 1. 3-D ultrasonography cerebral volumes in the whole
population and in the normal and abnormal neurodevelopment

subgroups

WBV (mL) TV (mL) FCV (mL) CV (mL)

Whole population
Median 425 7.8 51 12.4
IQR 381.8�484.3 7�9 44�54 11.6�13
Mean 428.1 8.4 49.6 12.03
SD 67.8 2.2 6.5 1.45

Normal neurodevelopment subgroup
Median 438 8 52 12.5
IQR 395�487 7.4l�9.8 47�54 11.8�13
Mean 440 8.76 50.9 12.41
SD 59.2 2.03 5.4 0.9

Abnormal neurodevelopment subgroup
Median 303 5.2 37.8 8.2
IQR 295�340 5�5.6 35�41.5 7.8�9.75
Mean 316.5 5.21 38.2 8.6
SD 24.5 0.55 4.1 0.98

IQR = interquartile range; SD = standard deviation; WBV =whole
brain volume; TV = thalamus volume; FCV = frontal cortex volume;
CV = cerebellum volume.
Mann�Whitney test, whereas multiple comparisons

between more than two groups were performed using the

non-parametric Kruskal�Wallis test with Dunn’s ad hoc

post-test. Correlations between variables under investigation

were checked with Spearman’s rho (r) rank correlation coef-

ficient analysis. Bivariate and multivariate binary logistic

regression was performed, and odds ratios with 95% confi-

dence intervals (CIs) were calculated to assess the relation-

ship between the parameters studied and the

neurodevelopmental outcome, as well as to look for a predic-

tive model. Prognostic accuracy of cerebral volumes, GA

and BW as indicators of disease was quantified as the area

under (AUC) the specific receiver operating characteristic

(ROC) curves. These were constructed considering values of

infants who had not had not or had experienced impaired

neurodevelopment, respectively. The cutoff and correspond-

ing sensitivity and specificity values were calculated. AUCs

were compared using the Delong test.
RESULTS

Occurrence of neurobehavioral disorders and risk ratios

associated with different gestational ages and IUGR

At 2 y, the occurrence of neurobehavioral disorders,

as well as the risk ratios associated with different gesta-

tional ages and IUGR, were considered.

The occurrence of abnormal neurodevelopment in

our population was 9.9% (3.9% preterm, 1.5% IUGR

and 4.5% pre-IUGR). Risk ratios were as follows; pre-

IUGR, 143.6 (95% CI: 9.4�2196, p < 0.001); IUGR,

52.7 (95% CI: 3.75�740.6, p < 0.001), preterm, 36.3

(95% CI: 2.4�552.8, p < 0.001)].
Descriptive statistics of variables under investigation

Data concerning the variability of 3-DUS cerebral

volumes in normal and abnormal neurodevelopment sub-

groups were reported (Table 1) also with respect to ges-

tational ages and IUGR (Table 2).
3-DUS cerebral volumes in the subgroups of normal and

abnormal neurodevelopment and with respect to GA and

IUGR

Comparison analysis of WBV, TV, FCV and CV in

the subgroups with different neuro-development outcomes

revealed that all cerebral volumes examined were signifi-

cantly lower in neonates characterized by abnormal neuro-

development (Fig. 2a).

Multicomparison analysis of WBV, TV, FCV and

CV in the whole population showed that all variables

were significantly higher in full-term neonates (Fig. 2b).

Pre-IUGR newborns had significantly greater reductions

in WBV and TV or FCV and CV in comparison with pre-

term and IUGR or preterm newborns, respectively



Table 2. 3-D ultrasonography cerebral volumes for the whole population and the normal and abnormal neurodevelopment subgroups
with respect to gestational age and intra-uterine growth restriction

Whole population

Full term Preterm

WBV (mL) TV (ml) FCV (mL) CV (mL) WBV (mL) TV (mL) FCV (mL) CV (mL)

Median 485 9.2 54 13 395 7.4 46 11.8
IQR 450�518 8.2�12.4 52.7�56.6 12.6�13.4 365�415 6.8�7.8 42.4�51 11.3�12.2
Mean 482.5 10 54.6 13 387.7 7.2 46.2 11.5
SD 43.1 2 3.2 0.59 42.6 1 5.4 1.3

IUGR Pre-IUGR

WBV (mL) TV (mL) FCV (mL) CV (mL) WBV (mL) TV (mL) FCV (mL) CV (mL)

Median 380.5 6.8 43.2 11.5 340 5.8 43 10.5
IQR 350�408 6.6�7.4 42�46 10.9�11.8 309�383 5.2�6.9 36.5�48.5 8.4�11.6
Mean 381.1 6.8 43.6 11.1 348.0 6,152 42.96 10.13
SD 39.5 07 2.7 1.2 43.83 1.008 6.3 1.5

Normal neurodevelopment subgroup

Full-term Preterm

WBV (mL) TV (mL) FCV (mL) CV (mL) WBV (mL) TV (mL) FCV (mL) CV (mL)

Median 485 9.2 54 13 396 7.4 48 11.8
IQR 450�518 8.2�12.4 52.7�56.6 12.6�13.4 378�419 7.1�7.8 43.8�51 11.6�12.3
Mean 482.5 10 54.6 13 398.1 7.5 47.4 11.9
SD 43.1 2 3.2 0.59 32.1 0.67 4.3 0.6

IUGR Pre-IUGR

WBV (mL) TV (mL) FCV (mL) CV (mL) WBV (mL) TV (mL) FCV (mL) CV (mL)

Median 388 7 43.8 11.6 378.5 6.85 48 11.4
IQR 369�414 6.8�7.45 42�46 11.3�11.9 343�401 6.8�7.3 42.7�50 10.9�11.8
Mean 389.5 7.1 44 11.5 374.6 6.9. 47 11.3
SD 36.7 0.44 2.8 0.5 36.8 0.6 4.5 0.7

Abnormal neurodevelopment subgroup

Preterm IUGR Pre-IUGR

WBV (mL) TV (mL) WBV (mL) TV (mL) WBV (mL) TV (mL) FCV (mL) CV (mL) WBV (mL) TV (mL) FCV (mL) CV (mL)

Median 298 5.2 305 5.2 352 5.3 42 9.8 305 5.2 36 8.4
IQR 292�328 4.8�5.8 295� 337 4.8�5.6 318� 353 5.1�5.5 40.1� 43.5 7.5�10 295� 337 4.8�5.6 35.6� 36 7.4�8.4
Mean 308.3 5.2 316 5.2 339 5.3 41.8 8.9 316 5.2 38 8.7
SD 25.7 0.8 27.3 0.42 25 0.2 1.8 1.4 27.3 0.42 4.5 0.9

IQR = interquartile range; SD = standard deviation; WBV =whole brain volume; TV = thalamus volume; FCV = frontal cortex volume; CV = cere-
bellum volume.
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(Fig. 2b). Also, TV and FCV levels were significantly

lower in IUGR versus preterm neonates (Fig. 2b).

3-DUS cerebral volumes in the normal and abnormal

neurodevelopment subgroups with respect to GA and

IUGR

When the cerebral volumes of full-term, preterm,

IUGR and pre-IUGR neonates in the normal and

impaired neurodevelopment outcome subgroups were

compared, we found that full-term neonates had signifi-

cantly higher levels of all variables in both subgroups

(Fig. 3). On examination of WBV, TV, FCV and CV in

the normal and abnormal neurodevelopment sub-

groups, newborns with impaired outcome manifested
significant reductions, except in the case of FCV in

IUGR neonates (Fig. 3). In the normal neurodevelop-

ment subgroup, in addition, significant differences in

WBV, TV, FCV and CV were noted between IUGR

and/or pre-IUGR versus preterm neonates, these var-

iations were not more seen in the abnormal neurode-

velopment subgroup (Fig. 3).

GA and BW in normal and abnormal neurodevelopment

subgroups and correlation between variables

Once the reduction in cerebral volumes in neonates

with impaired neurodevelopment was determined, and

because the risk of morbidity varies with the spectrum of

GA and BW (Thompson et al. 2019), the variability of the



Fig. 3. Three-dimensional ultrasonography cerebral volumes in the normal and abnormal neurodevelopment subgroups
with respect to gestational age and intra-uterine growth restriction (IUGR). WBV =whole brain volume, TV = thalamus

volume; FCV = frontal cortex volume; CV = cerebellum volume.
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latter parameters in the two subgroups (Table 3) and their

possible correlation with cerebral volumes were evaluated.

Statistically significant reductions in GA and BW

were determined in neonates with impaired neurodevel-

opment (Table 3). Analysis of the correlation indicated

that these variables strongly correlated with WBV, TV,

FCV and CV, with Pearson’s coefficients (r) of 0.739,

0.723, 0.687 and 0.707 or 0.846, 0.853, 0.810 and 0.827,

respectively. A strong and mutual correlation was also

found between all cerebral volumes; r was 0.868, 0.791,

0.841, 0.812, 0.855 and 0.826 for the associations of

WBV with TV, WBV with FCV, WBV with CV, TV

with FCV, TV with CV and CV with FCV, respectively.

Cerebral volumes, GA and BW as predictors of impaired

neurodevelopment at 2 y

Bivariate and multivariate analyses were then con-

ducted to further evaluate the relationship between brain

volumes and neurodevelopmental outcome at 2 y, as

well as to determine their ability as predictors of disease
or to look for a predictive model. The two risk factors

GA and BW were also included in the examination.

Results of univariate analysis revealed a significant

association of all cerebral volumes, GA and BW with

neurodevelopmental outcome (Table 4). No significant

logistic regression multivariate models were achievable

as a consequence of multicollinearity problems outstand-

ing the strong correlation between the variables studied

(data not shown).

Finally, the logistic regression analysis was comple-

mented with a predictive accuracy test that was quanti-

fied as AUCs. As full-term neonates are not at risk of

impaired neurodevelopment (Levine et al. 2015;

Murray et al. 2015; Wang et al. 2016; Taine et al. 2018),

the ROC curves were calculated with data including

(Figs. 4a and 5a) or excluding (Fig. 4b and 5b) the full-

term category. Results indicated that the 3-DUS volumes

had excellent prognostic accuracy in general (Fig. 4),

which was higher with respect to GA and BW (Fig. 5).

Comparison of the respective AUCs indicated that TV



Table 3. Gestational age and birth weight for the whole popu-
lation and the normal and abnormal neurodevelopment

subgroups

Gestational age (wk) Birth weight (g)

Whole population
Median 37 2400
IQR 34�38 1930�2970
Min/max 24�41 630�4000
Mean 35.9 2450
SD 3.2 778.4

Normal neurodevelopment subgroup
Median 37 2510
IQR 35�38 2065�2980
Min/max 24�41 670�4000
Mean 36.3 2567
SD 2.8 720

Abnormal neurodevelopment subgroup
Median 32* 1350*
IQR 28.5�35 1215�1660
min/max 24�37 630�2060
mean 31.9 1382
SD 3.8 376.5

IQR = interquartile range; SD = standard deviation.
* Statistically significant different compared with the normal neuro-

development subgroup.

Table 4. Relationship of variables under investigation with
neurodevelopment outcome at 2 y of age

Variable Bivariate logistic regression analysis

Odds ratio 95% CI p Value

WBV 0.923 0.91�0.952 <0.001
TV 0.00037 0.00003�0.05 0.002
FCV 0.55 0.446�0.682 <0.001
CV 0.017 0.002�0.166 >0.001
GA 0.686 0.609�0.773 <0.001
BW 0.997 0.995�0.998 <0.001

WBV =whole brain volume; TV = thalamus volume; FCV = frontal
cortex volume; CV = cerebellum volume; GA = gestational age;
BW = birth weight; CI = confidence interval.
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and CV were the best predictors in both evaluations, that

is, including or excluding the values for the full-term cat-

egory. In the first case, the prognostic accuracy was in

the order TV»CV > WBV»FCV > BW > GA (with

differences that were statistically significant different,

p � 0.01). When values for the full-term category were

omitted, the tendency was TV»CV > WBV»FCV,

while WBV > BW > GA and FCV»BW > GA (show-

ing differences that were statistically significant differ-

ent, p � 0.01).

Cutoff and corresponding sensibility and specificity

values of variables were then reported (Table 5).
DISCUSSION

Data obtained in the study described here validate

our previous findings and suggestions concerning the

possible role of 3-DUS WBV, TV, FCV and CV in
preterm and IUGR infants as early predictors of impaired

neurodevelopment in later life (Aisa et al. 2020). In

examining a heterogeneous population of full-term, pre-

term, IUGR and pre-IUGR neonates who significantly

differed with respect GA and BW, in accordance with

earlier reports, we found that at 2 y of age (or corrected

age in the case of prematurity), the occurrence of

impaired neurodevelopment was 9.9%, and this was

strongly and significantly related to prematurity and

IUGR in general (Gnanendran et al. 2015;

Levine et al. 2015; Murray et al. 2015; Wang et al. 2016;

Taine et al. 2018; Bolisetty et al. 2019; Aisa et al. 2020).

The association was in the order pre-IUGR > IUGR >

preterm and, conforming to GA and BW

(Thompson et al. 2019), it was different from that

recently obtained in a population of 37-wk GA full-term,

moderate preterm and moderate IUGR neonates

(Aisa et al. 2020). In the case of prematurity and IUGR,

indeed, the correlation was not significant and less pro-

nounced, respectively (Aisa et al. 2020). As observed

before (Aisa et al. 2020), 3-DUS volumes of whole

brain, thalamus, frontal cortex and cerebellum were sig-

nificantly reduced in preterm, IUGR and pre-IUGR

newborns in comparison to full-term newborns. In addi-

tion, with reference to prematurity or IUGR alone, the

association of these two different conditions induced

additional decreases in all cerebral volumes or in WBV

and TV, respectively. As expected, the volumetric

diminutions strongly correlated with GA and BW

(Thompson et al. 2019). Evaluation of the 3-DUS vol-

umes in the normal and abnormal neurodevelopment

subgroups revealed significantly lower levels in neo-

nates characterized by impaired outcome. This was also

observed when comparing the respective categories of

preterm, IUGR and pre-IUGR newborns

(Aisa et al. 2020). Contrary to the normal neurodevel-

opment subgroup, the differences between categories

were not evident in the abnormal neurodevelopment

subgroup.

In agreement with the aforementioned findings,

many cohort studies have highlighted similar evi-

dence. Measurements of head circumference (a vari-

able that correlates with WBV) at birth or of CV were

found to be lower in preterm and VLBW or IUGR neo-

nates and to associate with motor, cognitive and

school performance in childhood (Garc�ıa-
Alix et al. 2004; Cheong et al. 2008, 2016;

Keunen et al. 2016; Matthews et al. 2018;

Egashira et al. 2019; Wu et al. 2019; Bach et al. 2020;

Hammerl et al. 2020). However, in contrast to our

data, the association of IUGR with prematurity did not

further impair CV in pre-IUGR newborns compared

with preterm newborns, while TV was also affected

(Bruno et al. 2017). To date, such a discrepancy in CV



Fig. 4. Receiver operating characteristic (ROC) curves of whole brain volume (WBV), thalamus volume (TV), frontal
cortex volume (FCV) and cerebellum volume (CV).
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is not clear; however, it may be owing to the different

accuracy of MRI and US in volume detection.

Interestingly, thalamus growth in IUGR versus

adequate-for-gestational-age participants followed the

opposite trend depending on whether it occurred in
fetal or perinatal life. In contrast to the reduction

observed at 30�40 d of age, indeed, TV had a ten-

dency to increase in IUGR fetuses (Green et al. 2016).

The significance of this change is as yet unclear. How-

ever, it may be speculated that the reactive



Fig. 5. Receiver operating characteristic (ROC) curves of gestational age (GA) and birth weight (BW).
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vasodilation of cerebral circulation, with the rela-

tively greater blood supply and possible edema for-

mation in the cerebral areas (owing to oxygen

deficiency in IUGR fetuses [Hernandez-

Andrade et al. 2008]), may cause a false increase in

brain volumes in fetal life. This, in the early postnatal
Table 5. Cutoff and corresponding sensitivity and spec

Cutoff (mL) Sensitivity [9

With Without With

WBV 356 354.5 94 [80�99]
TV 6.2 6.2 100 [89�100]
FCV 44 42 94 [80�99]
CV 10.5 10.2 100 [89�100]
GA 34.5 33 67 [48�82]
BW 1790 1750 88 [72�97]

With = with data of full-term category; Without = without data of full-term
WBV =whole brain volume; TV = thalamus volume; FCV = frontal cortex
weight; CI: confidence interval.
period, may be quickly lost, allowing cerebral areas

to exhibit the real conditions in which the hormonal

changes in IUGR placenta have decreased the prolif-

eration and differentiation of neuronal cells with con-

sequent reduction of growth (Baud and Berkane

2019).
ificity values of the variables under investigation

5% CI] (%) Specificity [95% CI] (%)

Without With Without

91 [76�98] 93 [89�95] 86 [79�91]
100 [89�100] 99 [98�100] 99 [95�99.8]
85 [68�95] 82 [77�86] 83 [75�88]
97 [84�99.9] 97 [94�99] 95 [91�98]
61 [42�77] 76 [70�80] 77 [71�83]
85 [68�95] 87 [83�91] 84 [79�89]

category; AUC = area under the receiver operating characteristic curve;
volume; CV = cerebellum volume; GA = gestational age; BW = birth



Fig. 7. Example of a 3-D ultrasonographic image of the
thalmus.
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Finally, to deeply evaluate the relationship of neu-

rodevelopment at 2 y with the variables examined, as

well as to assess their prognostic accuracy or to look for

a possible predictive model, we performed logistic

regression analyses and calculated the respective AUCs.

Remarkably, all brain volumes had excellent prognostic

accuracy in general, although TV and CV were the best

predictors. A significant predictive multivariate model

could not be achieved because of multicollinearity prob-

lems. This indicated that the 3-DUS cerebral volumes

may be used alone to recognize neonates at risk of

impaired neurodevelopment.

The cutoff values of the 3-DUS cerebral volumes

were also reported, thus providing the preliminary tools

of reference. As expected and in accordance with dif-

ferences in GA and BW (Thompson et al. 2019), the

cutoff values of 3-DUS WBV, TV, FCV and CV were

lower than those found previously (Aisa et al. 2020),

suggesting that identification of GA- or BW-specific

ranges for 3-DUS regional brain volumes could be used

to determine neonates at long-term risk of impaired

neurodevelopment more accurately. Further studies in

this direction with larger populations are needed to find

optimized values.
CONCLUSIONS

Recent progress achieved in the preventive, diag-

nostic and therapeutic fields, concerning both assistance

to pregnant women and care of newborns, has led to a

significant increase in the survival of preterm and IUGR

neonates with GA <32wk and BW <1000 g. Despite

this, concurrent reduction in the incidence of various

developmental disorders in these children has not been

described (Keunen et al. 2016; Cheong et al. 2017;

Pierrat et al. 2017). In this context, the identification of
Fig. 6. Example of a 3-D ultrasonographic image of the whole
brain volume.
early and accurate predictors of long-term risk of

impaired psychophysical, behavioral and sociorelational

development in infants is urgent and crucial because it

would facilitate the implementation of targeted therapies

to improve developmental issues when neuroplasticity is

optimal (Cheong et al. 2016; Keunen et al. 2016;

Monson et al. 2016; Aisa et al. 2020).

Data from the present study may open wide per-

spectives in both pediatric neurology and pediatric

neurobehavioral medicine, as well as highlight the

fundamental role that the 3-DUS approach may play in

neonatal cerebral imaging. The 3-DUS volumetric

assessment at postnatal days 30�40 of the most impor-

tant structures of the brain involved in neurodevelop-

ment does indeed have all the features of a successful

disease predictor, including excellent accuracy, high

intra- and extra-operator reproducibility, little time

and cost and ease of estimation. The possibility of eas-

ily and accurately measuring cerebral volumes (in

Figs. 6 and 7 are two examples of 3-DUS images) at

postnatal days 30�40 may provide specific long-term

evaluations of the physical, behavioral or sociorela-

tional areas, allowing a finer distinction between pre-

term and IUGR subjects at risk or not of delayed

neurodevelopment. In addition, meeting the screening

criteria, the 3-DUS assessment of these volumes may

be used alone or in association with other approaches

(Als et al. 2005; Provenzi et al. 2018) for the recogni-

tion of neonates eligible for early intervention thera-

pies and neurodevelopmental follow-up during the

first few years of life.
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